Степени и корни

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1.  При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n =  a m + n .

2.  При делении степеней с одинаковым основанием их показатели вычитаются .

3.  Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc ) n = a n · b n · c n

4.  Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5.  При возведении степени в степень их показатели перемножаются:

( a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р .  ( 2 · 3 · 5 / 15 ) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:

Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m ,  меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы .  2 0 = 1,   ( 5 ) 0 = 1,   ( 3 / 5 ) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений.

Случай 1.

где a ≠ 0 , не существует .

В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0

Случай 2.

- любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.


Если считать, что правила действий со степенями распространяются и на степени с нулевым основанием, то

0 0 - любое число.

Действительно,


Р е ш е н и е .  Рассмотрим три основных случая:

1) x = 0 это значение не удовлетворяет данному уравнению

( Почему? ).

2)   при x > 0  получаем: x / x = 1,  т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

нашем случае x > 0 , ответом является x > 0 ;

3)   при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

в этом случае нет решения.

Таким образом, x > 0.

Назад