Степени и корни
Операции со степенями и корнями. Степень с отрицательным ,
нулевым и дробным показателем. О выражениях, не имеющих смысла.
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются :
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются .
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc … ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.
П р и м е р . ( 2 · 3 · 5 / 15 ) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .
Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).
1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:
2. Корень из отношения равен отношению корней делимого и делителя:
3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:
4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:
5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:
Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.
Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:
Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .
П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .
Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.
Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.
П р и м е р ы . 2 0 = 1, ( – 5 ) 0 = 1, ( – 3 / 5 ) 0 = 1.
Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :
О выражениях, не имеющих смысла. Есть несколько таких выражений.
Случай 1.
где a ≠ 0 , не существует .
В самом деле, если предположить, что
x
– некоторое число, то в соответствии с определением операции деления имеем:
a
= 0·
x
, т.e.
a
= 0,
что противоречит условию:
a
≠ 0
Случай 2.
-
любое число.
В самом деле, если предположить, что это выражение равно некоторому числу
x
, то согласно
определению операции деления имеем: 0 = 0 ·
x
. Но это равенство имеет место при
любом числе x
, что и требовалось доказать.
Случай 3.
Если считать, что правила действий со степенями распространяются и на степени с
нулевым
основанием,
то
0
0
-
любое число.
Действительно,
Р е ш е н и е .
Рассмотрим три основных случая:
1)
x
= 0
–
это значение не удовлетворяет данному уравнению
(
Почему? ).
2) при
x
> 0 получаем:
x
/
x
= 1, т.e. 1 = 1, откуда следует,
что
x
– любое число; но принимая во внимание, что в
нашем
случае
x
> 0 , ответом является
x
> 0 ;
3) при
x
< 0 получаем: –
x
/
x
= 1, т.
e
.
–1 = 1, следовательно,
в этом
случае нет решения.
Таким образом,
x
> 0.