Одночлены и многочлены

Одночлен. Коэффициент. Числовой множитель. Подобные одночлены.

Степень одночлена. Сложение одночленов. Приведение подобных членов.

Вынесение за скобки. Умножение одночленов.  Деление одночленов.

Многочлен. Степень многочлена. Умножение сумм и многочленов.

Раскрытие скобок.

Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например,

3 a 2 b 4 , b d 3 , 17 a b c

- одночлены. Единственное число или единственная буква также могут считаться одночленом. Любой множитель в одночлене называется коэффициентом. Часто коэффициентом называют лишь числовой множитель. Одночлены называются подобными , если они одинаковы или отличаются лишь коэффициентами. Поэтому, если два или нескольк о одночленов имеют одинаковые буквы или их степени, они также подобны.

Степень одночлена – это сумма показателей степеней всех его букв.

Сложение одночленов . Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду:

a x 3 y 2 5 b 3 x 3 y 2 + c 5 x 3 y 2 = ( a – 5 b 3 + c 5 ) x 3 y 2 .

Эта операция называется приведением подобных членов. Выполненное здесь действие называется также вынесением за скобки .

Умножение одночленов . Произведение нескольких одночленов можно упростить, если только оно содержит степени одних и тех же букв или числовые коэффициенты. В этом случае показатели степеней складываются, а числовые коэффициенты перемножаются.

П р и м е р :

5 a x

3 z 8 ( 7 a 3 x 3 y 2 ) = 35 a 4 x 6 y 2 z 8 .

Деление одночленов . Частное двух одночленов можно упростить, если делимое и делитель имеют некоторые степени одних и тех же букв или числовые коэффициенты. В этом случае показатель степени делителя вычитается из показателя степени делимого, а числовой коэффициент делимого делится на числовой коэффициент делителя.

П р и м е р :

35 a 4 x 3 z 9 : 7 a x 2 z 6 = 5 a 3 x z 3 .

Многочлен - это алгебраическая сумма одночленов . Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Умножение сумм и многочленов. Произведение суммы двух или нескольких выражений на любое выражение равно сумме произведений каждого из слагаемых на это выражение:

( p + q + r ) a = pa + qa + ra - раскрытие скобок .

Вместо букв p , q , r , a может быть взято любое выражение.

П р и м е р :

( x+ y+ z )( a+ b ) = x( a+ b ) + y( a+ b ) + z( a+ b ) =

= xa + xb +  ya + yb +  za +  zb .

Произведение сумм равно сумме всех возможных произведений каждого слагаемого одной суммы на каждое слагаемое другой суммы.

Назад