Доказательство и решение неравенств

Методы доказательства неравенств.

Решение неравенств. Равносильные неравенства.

Метод интервалов. Системы неравенств.

Доказательство неравенств. Существует несколько методов доказатель ства неравенств. Мы рассмотрим их на примере неравенства:

где a положительное число.

1). Использование известного или ранее доказанного неравенства.

Известно, что ( a – 1 ) ² 0 .

2). Оценка знака разности между частями неравенства .

Рассмотрим разность между левой и правой частью:

более того, равенство имеет место только при a = 1 .

3). Доказательство от противного.

Предположим противное:

Умножая обе части неравенства на a , получим: a 2 + 1 < 2 a , т. e .

a 2 + 1 – 2 a < 0 , или ( a – 1 ) 2 < 0, что неверно. ( Почему ? ) .

Полученное противоречие доказывает справедливость

рассматриваемого неравенства.

4). Метод неопределённого неравенства.

Неравенство называется неопределённым , если у него знак \/ или /\ ,

т.е. когда мы не знаем в какую сторону следует повернуть этот знак,

чтобы получить справедливое неравенство.

Здесь действуют те же правила, что и с обычными неравенствами.

Рассмотрим неопределённое неравенство:

Умножая обе части неравенства на a , получим: a 2 + 1 \/ 2 a , т. e .

а 2 + 1 – 2 a \/ 0 , или ( a – 1 ) 2 \/ 0 , но здесь мы уже знаем, как повернуть

знак  \/ , чтобы получить верное неравенство ( Как? ). Поворачивая его

в нужном направлении по всей цепочке неравенств снизу вверх, мы
получим требуемое неравенство.

Решение неравенств. Два неравенства, содержащие одни и те же неизвестные, называются равносильными , если они справедливы при одних и тех же значениях этих неизвестных . Такое же определение используется для равносильности двух систем неравенств. Решение неравенств - это процесс перехода от одного неравенства к другому, равносильному неравенству. Для этого используются основные свойства неравенств (см. параграф "Неравенства: общие сведения" ). Кроме того, может быть использована замена любого выражения другим, тождественным данному. Неравенства могут быть алгебраические ( содержащие только многочлены ) и трансцендентные ( например, логарифмические или тригонометрические ). Мы рассмотрим здесь один очень важный метод, используемый часто при решении алгебраических неравенств.

Метод интервалов. Решить неравенство:  ( x – 3 )( x – 5 ) < 2( x – 3 ). Здесь нельзя делить обе части неравенства на ( x – 3 ), так как мы не знаем знака этого двучлена ( он содержит неизвестное x ). Поэтому мы перенесём все члены неравенства в левую часть:

( x – 3 )( x – 5 ) – 2( x – 3 ) < 0 ,

разложим её на множители:

( x – 3 )( x – 5  – 2 ) < 0 ,

и получим: ( x – 3 )( x – 7 ) < 0. Теперь определим знак произведения в левой части неравенства в различных числовых интервалах. Заметим, что x = 3 и x = 7 - корни этого выражения. Поэтому вся числовая ось разделится этими корнями на следующие три интервала:

В интервале I ( x < 3 ) оба сомножителя отрицательны, следовательно , их произведение положительно ; в интервале II ( 3 < x < 7 ) первый множитель ( x 3 ) положителен, а второй ( x 7 ) отрицателен, поэтому их произведение отрицательно ; в интервале III ( x > 7 ) оба сомножителя положительны, следовательно, их произведение также положительно . Теперь остаётся выбрать интервал, в котором наше произведение отрицательно . Это интервал II , следовательно, решение неравенства: 3 < x < 7. Последнее выражение - так называемое двойное неравенство . Оно означает, что x должен быть одновременно больше 3 и меньше 7.

П р и м е р .  Решить следующее неравенство методом интервалов:

( x – 1 )( x – 2 )( x – 3 ) … ( x –100 ) > 0 .

Р е ш е н и е . Корни левой части неравенства очевидны: 1, 2, 3, …, 100.

Они разбивают числовую ось на 101 интервал:

Так как количество скобок в левой части чётно (равно 100), то

при x < 1, когда все множители отрицательны, их произведение

положительно. При переходе через корень происходит смена

знака произведения. Поэтому следующим интервалом, внутри

которого произведение положительно, будет ( 2, 3 ), затем ( 4, 5 ),

затем  ( 6, 7 ), … , ( 98, 99 ) и наконец , x >100.

Таким образом, данное неравенство имеет решение:

x < 1,  2 < x < 3,  4 < x < 5 ,…, x >100.

Итак, чтобы решить алгебраическое неравенство, надо перенести все его члены в левую (или правую) часть и решить соответствующее уравнение. После этого найденные корни нанести на числовую ось; в результате она разбивается на некоторое число интервалов. На последнем этапе решения нужно определить, какой знак имеет многочлен внутри каждого из этих интервалов, и выбрать нужные интервалы в соответствии со знаком решаемого неравенства.

Заметим, что большинство трансцендентных неравенств заменой неизвестного приводятся к алгебраическому неравенству. Его надо решить относительно нового неизвестного, а затем путём обратной замены найти решение для исходного неравенства.

Системы неравенств. Чтобы решить систему неравенств, необходимо решить каждое из них, и совместить их решения. Это совмещение приводит к одному из двух возможных случаев: либо система имеет решение, либо нет.

П р и м е р  1.  Решить систему неравенств:

Р е ш е н и е.  Решение первого неравенства: x < 4 ;  а второго: x > 6.

Таким образом, эта система неравенств не имеет решения.

( Почему ? )

П р и м е р  2.  Решить систему неравенств:

Р е ш е н и е.  Первое неравенство, как и прежде, даёт: x < 4; но решение

второго неравенства в данном примере: x > 1.

Таким образом, решение системы неравенств: 1 < x < 4.

Назад