Графическое решение неравенств

Приближённое решение неравенств.

Графическое решение неравенств с одним неизвестным.

Графическое решение систем неравенств с двумя неизвестными.

Пересечение решений.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным , необходимо перенести все его члены в одну часть, т. e . привести к виду:

f ( x ) > 0 ,

и построить график функции y = f ( x ) . После этого, используя построенный график, можно найти нули функции (см. выше ), которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b ( рис.30 ). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x < a и x > b ( они выделены жирными стрелками ). Ясно, что знак > здесь условный; вместо него может быть любой другой: < , , .

Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т. e . привести неравенства к виду:

и построить графики функций y = f ( x ), y = g ( x ) , ... , y = h ( x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т. e . их общую часть.

П р и м е р .   Решить графически систему неравенств:

Р е ш е н и е .  Сначала построим графики функций y = - 2 / 3 x + 2  и

y = x 2 - 1 ( рис.31 ):

Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x < - 1  и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т. e . привести

нера венства к виду:

2) построить графики функций, заданных неявно: f ( x , y ) = 0 и g ( x , y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой – нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет – то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р .  Решить систему неравенств:

Р е ш е н и е .  Сначала строим графики линейных функций:  5 x – 7 y = - 11 и

2 x + 3 y = 10 ( рис.32 ). Для каждой из них находим полуплоскость,

внутри которой соответствующее заданное неравенство

справедливо. Мы знаем, что достаточно проверить справедливость

неравенства в одной произвольной точке области; в данном

случае легче всего использовать для этого начало координат O ( 0, 0 ).

Подставляя его координаты в наши неравенства вместо x и y ,

получим: 5 · 0 – 7 · 0 = 0 > - 11, следовательно, нижняя

полуплоскость ( жёлтого цвета ) является решением первого

неравенства;  2 · 0 + 3 · 0 = 0 < 10, поэтому второе неравенство

имеет своим решением также нижнюю полуплоскость ( голубого

цвета ). Пересечение этих полуплоскостей ( область цвета бирюзы )

является решением нашей системы неравенств.

Назад